Weighted Eigenfunction Estimates with Applications to Compressed Sensing
نویسندگان
چکیده
Using tools from semiclassical analysis, we give weighted L∞ estimates for eigenfunctions of strictly convex surfaces of revolution. These estimates give rise to new sampling techniques and provide improved bounds on the number of samples necessary for recovering sparse eigenfunction expansions on surfaces of revolution. On the sphere, our estimates imply that any function having an s-sparse expansion in the first N spherical harmonics can be efficiently recovered from its values at m & sN log(N) sampling points.
منابع مشابه
Frames for compressed sensing using coherence
We give some new results on sparse signal recovery in the presence of noise, for weighted spaces. Traditionally, were used dictionaries that have the norm equal to 1, but, for random dictionaries this condition is rarely satised. Moreover, we give better estimations then the ones given recently by Cai, Wang and Xu.
متن کاملA Block-Wise random sampling approach: Compressed sensing problem
The focus of this paper is to consider the compressed sensing problem. It is stated that the compressed sensing theory, under certain conditions, helps relax the Nyquist sampling theory and takes smaller samples. One of the important tasks in this theory is to carefully design measurement matrix (sampling operator). Most existing methods in the literature attempt to optimize a randomly initiali...
متن کاملAn equivalent representation for weighted supremum norm on the upper half-plane
In this paper, rstly, we obtain some inequalities which estimates complex polynomials on the circles.Then, we use these estimates and a Moebius transformation to obtain the dual of this estimates forthe lines in upper half-plane. Finally, for an increasing weight on the upper half-plane withcertain properties and holomorphic functions f on the upper half-plane we obtain an equivalentrepresenta...
متن کاملWeighted ℓ1-Minimization for Sparse Recovery under Arbitrary Prior Information
Weighted l1-minimization has been studied as a technique for the reconstruction of a sparse signal from compressively sampled measurements when prior information about the signal, in the form of a support estimate, is available. In this work, we study the recovery conditions and the associated recovery guarantees of weighted l1-minimization when arbitrarily many distinct weights are permitted. ...
متن کاملWeighted $\ell_1$-Minimization for Sparse Recovery under Arbitrary Prior Information
Weighted l1-minimization has been studied as a technique for the reconstruction of a sparse signal from compressively sampled measurements when prior information about the signal, in the form of a support estimate, is available. In this work, we study the recovery conditions and the associated recovery guarantees of weighted l1-minimization when arbitrarily many distinct weights are permitted. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Math. Analysis
دوره 44 شماره
صفحات -
تاریخ انتشار 2012